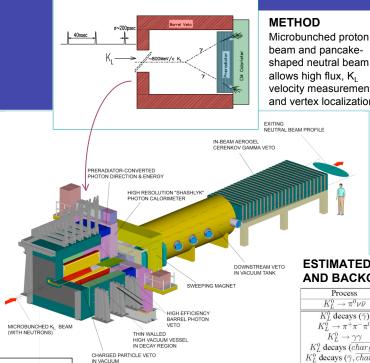
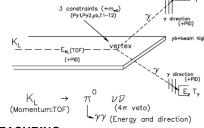


Arizona State U BNI U of Cincinnati IHEP-Protvino INR-Moscow, KEK, Kyoto U. of Education, Kyoto U., U. of Montreal, U. of New Mexico, INFN-U. of Perugia, Stony Brook U., TRIUMF, U. of British Columbia, U. of Virginia, VPI&SU, Yale U., U. of Zurich


KOPIO proposes to measure a minimum of 40 events at the Standard Model level, with a signal to background of 2:1.

MOTIVATION


The "Golden" mode of decay for the K_I ° is unique among potential SM observables. It is entirely driven by CP violation due to the CP properties of the K_1° , π° and the relevant neutral transition current. In the SM, it is GIMsuppressed to the one-loop level and top-quark dominated. Hadronic uncertainties are eliminated by comparison with Ke3. Thus the branching ratio (BR) of the decay is calculable to 2% in terms of the Wolfenstein parameters and m_t:

 $BR = 2.1 \cdot 10^{-10} \, \eta^2 \, A^4 \, X^2 (m_t^2 / M_W^2)$ $\approx (3.0\pm0.6)10^{-11}$

A clean measure of the height of the unitarity triangle is provided by the BR. All other parameters being known implies that the relative error in η is half that on

beam and pancakeshaped neutral beam velocity measurement and vertex localization.

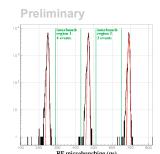
MEASURING:

- Time of flight of the KL to allow kinematic selection to reject backgrounds.
- The converted y direction.
- The y energies with high precision.
- All other detectable particles that are emitted in the decay in order to veto the events

ESTIMATED EVENT LEVELS FOR SIGNAL AND BACKGROUNDS:

Process		Modes	Main source	Events
i	$K_L^0 o \pi^0 u \bar{ u}$			41
	$_L^0$ decays $(\bar{\gamma})$	$\pi^0\pi^0$, $\pi^0\pi^0\pi^0$, $\pi^0\gamma\gamma$	$\pi^0\pi^0$	12.8
K	$_{L}^{0}\rightarrow\pi^{+}\pi^{-}\pi^{0}$			0.65
	$K_L^0 o \gamma \gamma$			0.02
	lecays (charge)	$\pi^{\pm}e^{\mp}\nu$, $\pi^{\pm}\mu^{\mp}\nu$, $\pi^{+}\pi^{-}$	$\pi^-e^+\nu$	0.02
K_L^0 de	cays $(\bar{\gamma}, \overline{charge})$	$\pi^{\pm}l^{\mp}\nu\gamma$, $\pi^{\pm}l^{\mp}\nu\pi^{0}$, $\pi^{+}\pi^{-}\gamma$	$\pi^-e^+\nu\gamma$	4.4
Other	particle decays	$\Lambda \to \pi^0 n, K^- \to \pi^- \pi^0, \Sigma^+ \to \pi^0 p$	$\Lambda o \pi^0 n$	0.01
.]	nteractions	n, K_L^0 , γ	$n o \pi^0$	0.2
	Accidentals	n, K_L^0 , γ	n, K_L^0 , γ	0.8
Tot	al Background			18.9

$K_L^0 \rightarrow \pi^0 v \overline{v} \quad \text{Im}(V_{ts}^* V_{td}) \quad \text{KOPIO} \quad [\text{"Jarlskog invariant"} \mid J_{cp} \mid]$ $|V_{ts}^*V_{td}|$ $B_d \rightarrow \psi K_s$ $sin(2\beta)$


 x_s

BABAR, BELLE, CDF, D0

CDF, D0, LHCB, BTEV

May 2004 BEAM EXTINCTION TEST

Using a 4.5 MHz cavity for beam extraction from the AGS, a microbunch width of 3ns and an interbunch extinction (number of events between microbunches relative to the microbunch) of ~10-⁵ was observed. The p's and π 's in the beam were electrostatically separated and the residual π 's suppressed by TOF cuts. Two small scintillators were used to trigger and measure the timing of the microbunched beam, and a 3x3 prototype shashlyk calorimeter was used for the energy measurement. The extinction result is better than what was predicted by simulations.

CURRENT STATUS AND SCHEDULE

- Technologies have matured in an R&D phase for 3 years.
- · Receiving \$2.5M this year for advanced planning.
- Integration and configuration control initialized.
- · Re-baselining of the detector is in process with the review set in early 2005.
- · RSVP construction start in FY05 requested in the NSF